Nitroglycerin was weakly mutagenic in Ames tests performed in two different laboratories. There was no incidence of hepato-cellular carcinomas in both sexes were 52% vs. 0% in controls, and incidences of testicular tumors were 52% vs. 8% in controls. Lifetime dietary administration of up to 1058 mg/kg/day, 434 mg/kg/day for six months prior to mating of the F0 generation with treatment continuing through generation. Carcinogenesis, Mutation, Impairment of Fertility measures of the activated partial thromboplastin time.

Intravenous nitroglycerin interferes, at least in some patients, with the anticoagulant effect of heparin. In patients receiving intravenous nitroglycerin, concomitant heparin therapy should be guided by frequent monitoring of the activated partial thromboplastin time.

Drug Interactions assays that rely on glycerol oxidase may give falsely elevated results in patients receiving this medication.

Nitroglycerin has been used topically in concentrations of 0.01% to 0.1% in the treatment of venous insufficiency. Administration of nitroglycerin ointment at doses up to 80 mg/kg/day and 240 mg/kg/day, respectively. No toxic effects have been noted. Appliance of nitroglycerin to the conjunctiva of the eye may cause irritation and should be avoided.

Drug Interactions: The vasodilating effects of nitroglycerin may be additive with those of other vasodilators, including calcium channel blockers, and beta-blockers; and for induction of intraoperative hypotension, nitroglycerin may be used in conjunction with other hypotensive agents such as sodium nitroprusside, esmolol, and clonidine. The use of these drugs in combination with nitroglycerin should be done with caution.

Nitroglycerin has not been tested in patients with renal failure. No specific studies have been performed in patients with renal function impairment. Nitroglycerin should be used with caution in patients with impaired renal function.

In a long-term study of patients with heart failure, nitroglycerin was used in patients with renal failure. The incidence of renal failure was the same as in the general population. The incidence of renal failure was the same as in the general population. The incidence of renal failure was the same as in the general population. The incidence of renal failure was the same as in the general population.

In clinical trials, nitroglycerin has been used in patients with renal failure. The incidence of renal failure was the same as in the general population. The incidence of renal failure was the same as in the general population. The incidence of renal failure was the same as in the general population. The incidence of renal failure was the same as in the general population. The incidence of renal failure was the same as in the general population.
NURSE TRAINING

Nursing Matters: It is not known whether nitroglycerin is excreted in human milk. Because many drugs are excreted in human milk, caution should be exercised when nitroglycerin is administered to a nursing mother.

Pediatric Use: Safety and effectiveness in children have not been established.

OVERDOSAGE

Intravenous nitroglycerin is a potent vasodilator and the potential effects of nitroglycerin over-dosage are generally the results of nitroglycerin's capacity to induce vasodilatation, venous pooling, reduced cardiac output, and hypotension. These effects can be intensified by the administration of other related agents and by the presence of hypovolemia. The hypotension associated with nitroglycerin overdose is usually responsive to the correction of hypovolemia and to support of adequate blood pressure and coronary perfusion pressure. The dose of nitroglycerin should be reduced or the interval between doses increased if there is evidence of significant hypotension. In patients who exhibit signs of impaired oxygen delivery despite adequate cardiac output and adequate pulmonary capillary wedge pressure, the use of epinephrine or other arterial vasoconstrictors in this setting is likely to do more harm than good. Hypotension and/or shock may result in the inability of tissue perfusion to satisfy metabolic needs; and in hypoxic states, concern for cerebral perfusion becomes important. In patients with normal or low left ventricular filling pressures or pulmonary capillary wedge pressure, the use of agents which might accelerate elimination of nitroglycerin and its active metabolites should be avoided. Since the hypotension associated with nitroglycerin overdose is responsive to the correction of hypovolemia and to support of adequate blood pressure and coronary perfusion pressure, the dose of nitroglycerin should be reduced or the interval between doses increased if there is evidence of significant hypotension. The prevention of hypotension is the primary goal in the management of nitroglycerin overdose. Other supportive measures may include fluid administration to maintain blood pressure and support of cardiac output and coronary perfusion pressure. Additionally, because the hypotension associated with nitroglycerin overdose may be resistant to many other hypertensive agents, attempts to raise blood pressure should be balanced carefully against the risk of accelerating elimination of nitroglycerin or its active metabolites. Because the hypotension associated with nitroglycerin overdose may be resistant to many other hypertensive agents, attempts to raise blood pressure should be balanced carefully against the risk of accelerating elimination of nitroglycerin or its active metabolites. The hypotension associated with nitroglycerin overdose may be resistant to many other hypertensive agents, attempts to raise blood pressure should be balanced carefully against the risk of accelerating elimination of nitroglycerin or its active metabolites. The hypotension associated with nitroglycerin overdose may be resistant to many other hypertensive agents, attempts to raise blood pressure should be balanced carefully against the risk of accelerating elimination of nitroglycerin or its active metabolites.

NITRO GLYCERIN INJECTION, USP

Rx Only

NITROGLYCERIN INJECTION is a potent vasodilator and the potential effects of nitroglycerin overdose are generally the results of nitroglycerin's capacity to induce vasodilatation, venous pooling, reduced cardiac output, and hypotension. These effects can be intensified by the administration of other related agents and by the presence of hypovolemia. The hypotension associated with nitroglycerin overdose is usually responsive to the correction of hypovolemia and to support of adequate blood pressure and coronary perfusion pressure. The dose of nitroglycerin should be reduced or the interval between doses increased if there is evidence of significant hypotension. In patients who exhibit signs of impaired oxygen delivery despite adequate cardiac output and adequate pulmonary capillary wedge pressure, the use of epinephrine or other arterial vasoconstrictors in this setting is likely to do more harm than good. Hypotension and/or shock may result in the inability of tissue perfusion to satisfy metabolic needs; and in hypoxic states, concern for cerebral perfusion becomes important. In patients with normal or low left ventricular filling pressures or pulmonary capillary wedge pressure, the use of agents which might accelerate elimination of nitroglycerin and its active metabolites should be avoided. Since the hypotension associated with nitroglycerin overdose is responsive to the correction of hypovolemia and to support of adequate blood pressure and coronary perfusion pressure, the dose of nitroglycerin should be reduced or the interval between doses increased if there is evidence of significant hypotension. The prevention of hypotension is the primary goal in the management of nitroglycerin overdose. Other supportive measures may include fluid administration to maintain blood pressure and support of cardiac output and coronary perfusion pressure. Additionally, because the hypotension associated with nitroglycerin overdose may be resistant to many other hypertensive agents, attempts to raise blood pressure should be balanced carefully against the risk of accelerating elimination of nitroglycerin or its active metabolites. Because the hypotension associated with nitroglycerin overdose may be resistant to many other hypertensive agents, attempts to raise blood pressure should be balanced carefully against the risk of accelerating elimination of nitroglycerin or its active metabolites. The hypotension associated with nitroglycerin overdose may be resistant to many other hypertensive agents, attempts to raise blood pressure should be balanced carefully against the risk of accelerating elimination of nitroglycerin or its active metabolites. The hypotension associated with nitroglycerin overdose may be resistant to many other hypertensive agents, attempts to raise blood pressure should be balanced carefully against the risk of accelerating elimination of nitroglycerin or its active metabolites. The hypotension associated with nitroglycerin overdose may be resistant to many other hypertensive agents, attempts to raise blood pressure should be balanced carefully against the risk of accelerating elimination of nitroglycerin or its active metabolites. The hypotension associated with nitroglycerin overdose may be resistant to many other hypertensive agents, attempts to raise blood pressure should be balanced carefully against the risk of accelerating elimination of nitroglycerin or its active metabolites.